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Abstract  

Shrew Distributed Denial-of-Service (DDoS) attacks are 

stealthy, concealing their malicious activities in normal traffic. 

Although it is difficult to detect shrew DDoS attacks in the time 

domain, the existent energy exposes them in frequency domain. 

For this purpose, online Power Spectral Density (PSD) analysis 

necessitates real-time PSD data conversion. In this paper, an 

optimized FPGA based accelerator for real-time PSD 

conversion is proposed, which is based on our innovative 

component-reusable Auto-Correlation (AC) algorithm and the 

adapted 2N-point real-valued Discrete Fourier Transform 

(DFT) algorithm. Further optimization is achieved through the 

exploration of algorithm characteristics and hardware 

parallelism for this case. Evaluation results from both 

simulation and synthesis are provided. The overall design can 

be easily placed in a Xilinx Virtex2 Pro FGPA. 
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1. INTRODUCTION 

The low-rate TCP-targeted Distributed Denial-of-

Service (DDoS) attack, also known as Shrew DDoS attack 

[10] or pulsing attack [12], takes advantage of the time-out 

mechanism of the TCP protocol to create illusory 

congestions. By sending bursts at a high pulse data rate 

while keeping a low average data rate, these attacks can 

throttle the throughput of legitimate TCP flows to as low as 

10% of normal bandwidth usage, and last indefinitely until 

detected [5, 6].  

Analyzing the power spectral density (PSD) of 

monitored traffic can be an efficient way to detect DDoS 

attacks. PSD describes the power distribution of a signal in 

the frequency domain. By counting arriving network 

packets during fixed intervals, a sequence of data points is 

collected over a specific time interval. Treating the data 

sequence as a random process, the PSD of traffic flow can 

be obtained through the calculation and subsequent 

conversion of its autocorrelation results to the frequency 

domain. The PSD difference between real-time monitored 

traffic flows and their normal statistical energy distribution 

exposes concealed malicious activities without the need for 

deep packet payload inspection [2]. 

Several research efforts have been reported that use 

PSD analysis for the detection and containment of DDoS 

attacks. Cheng et al [7] first reported the concept of 

utilizing PSD of network flow to detect general TCP SYN 

flood. Chen et al [4, 6] proposed using PSD of network 

flow to detect shrew attacks. Hashim et al [8] further 

extended PSD analysis based detection to the next 

generation mobile network (NGMN). They claimed that 

their proposed algorithm can accurately classify traffic as 

normal, DoS and DDoS. He et al [9] proposed a method 

for remote detection of bottleneck links, which is 

applicable to the detection of any network congestion, 

including DDoS attacks and Internet worms in theory.  

However, a major challenge that hampers the real-time 

application of these approaches is the lack of an 

appropriate data converter to bear the intensive computing 

requirements of producing real-time PSD data for analysis. 

Software solutions are incapable of coping with the high 

data rates, which naturally leads to pursuing hardware 

solutions.  

Having both the flexibility of software and high 

parallelism of hardware, reconfigurable hardware devices, 

such as Field Programmable Gate Arrays (FPGAs), have 

been widely applied for many network security 

applications including protocol wrapping, packet 

classification, and intrusion detection [3]. The growing 

number of FGPA Intellectual Property (IP) modules not 

only makes it easy for the implementation of diverse DSP 

functions to circuits, but provide excellent design balance 

between high performance and lower power consumption. 

Given these considerations, FPGA is the obvious choice 

for implementation of this PSD converter. 

In this paper, an optimized FPGA based real-time PSD 

converter is proposed, which converts data of interest into 

frequency domain for analysis. Our innovative embedded 

converter is able to close the gap between supply and 

demand of real-time PSD data. Taking advantage of 

processing continuous data sequences with partial overlap, 

the component-reusable Auto-Correlation (AC) algorithm 

is capable of significantly reducing computing workload in 

comparison with that of the conventional AC algorithm. In 

conjunction with the employment of an FFT IP core, the 

adapted 2N-point real-valued Discrete Fourier Transform 

(DFT) algorithm not only reduces the length of the 

operational data sequence to half, but fully utilizes the dual 

input channels of the FFT core to achieve an optimized 

design. For performance comparison, a design based on the  

conventional approach was also implemented. 

The remainder of this paper is structured as follows. In 

section 2, the overall system architecture and algorithms 

are described. Section 3 depicts further implementation 



details. Evaluation results are then explained in Section 4. 

After discussing some development issues in Section 5, 

Section 6 summarizes this paper. 

2. System Architecture and Algorithms 

2.1 System Architecture 

Figure 1 shows the overall architecture of the 

embedded data conversion accelerator, as outlined by the 

dashed box. It consists of two major modules: AC and 

DFT. The AC module takes a batch of sampled data and 

calculates its auto-correlation, i.e.: the similarity to its 

previous batch. The DFT module converts this AC result 

from the time domain to the frequency domain for PSD 

analysis. One can treat the number of arriving packets 

within a fixed time slot as a random process:  

{x(t)| t = n·, nN}  (1) 

where Δ is a constant time interval, N is the set of natural 

numbers and n is a set of positive integers. x(t) is a random 

variable that refers to the number of packets sampled 

within a unit time interval at time t, i.e. (t-Δ, t]. If we 

consider Δ is a unit time slot, Eq. (1) could be reduced to: 

{x(t)| t = n,  nN}  (2) 

Also, x(n) represents the total number of packets 

sampled at the n-th sampling period. The sampling process 

is assumed as a Wide-Sense Stationary (WSS) random 

process. The AC function is defined as: 
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where m=0, 1, 2, …, L-1. 

L refers to the length of the data sequence, i.e. the total 

number of sample points participating in a batch of the AC 

process. A(m) is the AC with a shift of m points from the n-

th sampling point, where {0 ≤ m < L}. After AC 

processing, the DFT is applied to convert the intermediate 

data to the frequency domain for PSD analysis by: 
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Eq. (4) gives a standard DFT formula and more detail 

can be found in [14]. As shown by Eq. (3) and Eq. (4), the 

data conversion process is computationally intensive. To 

reduce the delay, a hardware-based approach is introduced, 

which is based our innovative component-reusable AC 

algorithm and the Adapted 2N-point Real-valued DFT 

algorithm. 

2.2 Component-Reusable AC algorithm 

According to Eq. (3), the essential part of the AC 

process is the convolution between x(n) and x(n+m). With 

a specified m, it takes L - m multiplications per round to 

calculate the corresponding A(m), as shown in Fig. 2. To 

achieve a full batch of A(m) with {0 ≤ m < L}, a fixed 

number of multiplications are required, as:  
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For instance, in Fig. 2, it is assumed that the length of 

the operational data sequence (L) is 10 and the current shift 

(m) is 2. The convolution result of the i
th

 batch is: 
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which includes 8 multiplications per round as represented 

by the area combining C_1 and C_2 in the figure.  

In practice, the workload of AC process on a 

continuous data series can be reduced if convolution results 

are reusable. As long as not all the data points are replaced 

for the following batch’s AC process, existing partial 

convolution results can be reused, so as to reduce the 

overall computational complexity. To describe the 

replacement of data points for the continuous AC process, 

a new parameter r is introduced.  

As illustrated in Fig. 2, the replacement (r) is 3 for the 

(i+1)
th

 batch’s convolution. The three oldest data points are 

removed and the same number of new data points is 

appended to keep the same data length (L) for operation. 

Moving from the i
th

 batch, the operational data points are 

now from 3 to 12. The current convolution result is 

represented by the combined area of C_2 and C_3. C_1 is 

excluded, since the corresponding old points have been 

removed. Obviously, C_2, which was generated in the i
th

 

batch, can be reused as partial current result to avoid 

 

Figure 1. Data Conversion Steps. 

 

Figure 2. Convolution with reusable parts. 

http://en.wikipedia.org/wiki/Cross-correlation


recalculation. Only C_3 requires calculation, which is 3 

multiplications in this case. 

A further study reveals that, when L – m ≥ r, results of 

(L – m – r) rounds of multiplication can be reused for the 

calculation of the next batch’s A(m). In terms of the 

number of multiplications, that is: 
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Only r new multiplications need to be calculated, as 

illustrated in Fig. 2. However, when L – m < r, (L – m) 

multiplication per need to be calculated. Therefore, the 

total number of multiplications required for the calculation 

of a full batch AC process is: 

2
)

2

1
(

2

)1(
)1(

)(

2

1

10

r
rL

rr
rLr

mLrP
L

rLm

rL

m

total






 






  (8) 

When r ≥ L, since all the old data points are replaced, Ptotal 

reaches its maximum, as: 
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This equation also applies to the initial batch’s data 

sequence for AC processing, since all the data points are 

new. In fact, Preusable is the difference between Ptotal_max and 

Ptotal given 0 ≤ r ≤ L.  

According to Eq. (8) and Eq. (9), Ptotal calculated on 

top of a continuous data series is determined by L and r; 

and its upper bound is only determined by L. Figure 3 

gives an intuitive demonstration of their relationship. The 

replacement rate R (R= r/L) is introduced for the evaluation 

of the impact of this component-reusable AC algorithm on 

the overall computational complexity. In Fig. 3, the X axis 

represents the length of data sequence (L), and Y axis 

represents the number of required multiplication operations 

(N). Ten curves are presented that illustrate the relationship 

between L and Ptotal under different R values, bottom up 

from 10% to 100%, respectively. For L ranging from 10 to 

150, the impact of different Rs to the number of required 

multiplications N is presented. Without any reusable part, 

i.e.: R ≥ 100%, multiplication is applied to all the available 

data points, which is given by the upper curve. This curve 

overlaps the results of Ptotal_max from Eq. (9), which also 

validates our algorithm. 

With reusable part, N, depends on the percentage of 

reuse. The smaller R is, the less the N, since more elements 

are reusable for AC computation. Consider a series of N 

values when L = 120, for example. As labeled on the plot, 

N is 1374 when R = 10%, and it goes to 3690 when R = 

30%. In comparison with N = 7260 when R = 100%, 

approximately 81% and 50% multiplications are saved, 

respectively, when R is within 10-30%. However, N grows 

much faster with the increase of R. It rises to 5430 when R 

goes to 50%, and becomes much closer to the maximum N 

when R crosses 70%. Considering the corresponding 

overhead, it is more inappropriate to adopt this algorithm 

with high R for AC processing.  

Figure 4 further evaluates our component-reusable AC 

algorithm in terms of the increment rate (I) of N with 

respect to L. The X axis represents the length of data 

sequence (L), with a scale from 0 to 1500. The Y axis 

represents the increment rate (I) which is defined as: 
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where l and l + 1 refer to L on two adjacent stages, 

respectively. ∆N = N(l + 1) - N(l), which refers to the 

increment of N between two adjacent stages. 

Corresponding to different R values, ten curves are 

plotted illustrating the trends of I with the increase of L. 

Starting from L = 10, all curves achieve their peaks at L = 

11 with I at approximately 20. The maximum vertex is 

22.222 for R = 30%. In fact, I(11) is the first available I 

according to Eq. (10). Then, the curves decrease quickly 

 

Figure 3. The impact of sequence length L replacement rate to 

the computational complexity of multiplication. 

 

Figure 4. The trend of increment rate for multiplication. 



and finally trend to 0.1 based on the evaluation of L up to 

1500 points. Despite wide variation of N, curves under 

different R values show high consistency in I as illustrated 

in Fig. 3.  

From the above analysis, although our component-

reusable AC algorithm does not optimize I in terms of R, it 

decreases the value of N significantly with the increase of 

L. For L = 1000, a saving of 81% N could be achieved in 

comparison with different R values, at R = 10% versus R = 

100%. However, determining the right R for a perfect fit is 

application dependent. On the other hand, it affects the 

efficiency of using this algorithm.  

2.3 Adapted 2N-point Real-valued DFT algorithm 

After AC processing, the operational data sequence 

{A(m)| 0 ≤ m ≤ L-1} from Eq. (3) needs to be converted 

from the time to the frequency domain. The DFT is 

employed for this conversion. However, the 

implementation of DFT conversion in hardware is 

complicated and time-consuming. Employing existing 

Intelligent Property (IP) cores for this purpose is more 

practical than developing custom modules in FPGA design, 

not only facilitating prototyping, but achieving optimized 

performance and resource utilization on the targeted 

platform.  

Applying a Fast Fourier Transform (FFT) IP core is a 

common approach for implementing the DFT in and 

FPGA. Since the processing of the general purpose DFT is 

based on complex-valued data, the Xilinx FFT IP core 

features dual-channel input for taking both parts of a 

complex number simultaneously, i.e. one channel 

dedicating for real part, and the other for imaginary part. 

However, the data sequence output from A(m) is real-

valued only. Fetching them directly to the FFT IP core for 

processing leaves the input channel for imaginary-valued 

data unused. By fetching the real-valued data sequence into 

both input channels, not only could the throughput of DFT 

processing be doubled but the operation timing of the FFT 

IP core can be cut due to the length reduction of the 

operational sequence. Based on this idea and inspired from 

[1, 13, 14], an adapted 2N-point Real-valued DFT 

algorithm is proposed. 

This algorithm only applies to the data sequence with 

even length, i.e. L = 2N. The basic idea is to split the 2N-

point real data sequence to form an N-point complex data 

sequence for regular FFT processing. Then, the results of 

the other half are reconstructed by application of the 

symmetry conjugate property of complex numbers, rather 

than calculation. The following description outlines this 

procedure. 

(1) Decimate the real data sequence {A(m) | 0 ≤ m ≤ 2N-

1} into two parts to form a complex data sequence 

with length N. 

x(n) = A(2n) + jA(2n+1), (n = 0, 1, 2, … , N−1) (11) 

(2) Perform an FFT operation on the N-point sequence. 

Since the FPGA IP core is employed, this step is 

considered as a black-box process.  

X(k) = FFT{x(n)}, (k,n = 0, 1, 2, … , N−1) (12) 

(3) Calculate the first N-point results of Y(k) by: 

Y(k) =MA∙X(k)+MB∙X*(N-k), (k = 0, 1, 2, …, N−1) (13) 

where M1 and M2 are pre-calculated values for lookup. 
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(4) Obtain the remaining N-point result of Y(k) by using 

symmetry conjugate property of complex numbers: 

Y(2N−k) = Y*(k), (k = 1, 2, … , N−1); and 
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(5) Complete a batch of DFT conversion for A(m) with L 

= 2N. The results should be the same as that obtained 

through direct processing via 2N-point DFT: 

Y(k) = DFT{A(m)}, (k, m = 0, 1, 2, …, 2N-1) (16) 

The benefit of this approach is two-fold. Not only is 

the dual-channel input of the IP core fully utilized, but the 

workload of essential FFT processing is cut by at least half. 

Considering the complexity of the FFT operation for a 

length L data sequence is O(L*log(L)), a sequence with 

length N = L/2 is O((L/2)*log(L/2)). The reduction rate (R) 

is: 
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which represents how much the original work load is 

reduced. 

 

Figure 5. The reduction trend of FFT workload. 



Figure 5 gives an intuitive demonstration. The X axis 

shows the length (L) of data sequence for FFT operation 

ranging from 10 to 1500, and the Y axis the reduction rate 

(R). For a sequence with L=1024, a reduction of 55% the 

original FFT workload can be achieved. The reduction 

approaches nearly half as L increases further. 

3. Implementation 

3.1 Design Overview 

The block diagrams in Fig. 6 further refine the data 

conversion process presented in Fig. 1. Figure 6(a) 

illustrates a conventional architecture. Besides the AC and 

FFT processing blocks, memory blocks are introduced for 

data storage so as to achieve parallel execution. Memory 

M1 holds the input data sequence, memory M2 the 

intermediate results from the AC process, and memory M3 

and M4 the real and imaginary parts of processed DFT 

data, respectively. The depth of these memories is set to 

2N, the length of the operational data sequence. 

Figure 6(b) illustrates our innovative data conversion 

architecture. In comparison with the previous architecture, 

both the AC and DFT blocks are modified substantially. In 

the AC part, the reuse logic and its corresponding M5 for 

holding reusable data are added. In the DFT part, the direct 

2N-point FFT is replaced by the process of the N-point 

FFT plus the 2N-point rebuild. The intermediate data from 

the FFT are stored in M6, while the static parameters are 

stored in M7. The process of 2N-point rebuilding starts 

when both data sets are available.  

Based on the data traveling through the conversion 

process, the overall design is organized into three parts, as 

outlined in Fig. 6(b). The first part includes the AC process 

and the following N-point FFT process. It starts with 

reading the data from M1 and ends with writing the data to 

M6. The second part is the parameter generating process, 

which consists of the parameter generator and M7. The 

generator only runs during initialization: after all the 

necessary parameters are produced and stored in M7 for 

subsequent access, it sleeps until reset. The third part 

consists of the remaining components that take data from 

both M6 and M7 for 2N-point rebuild and write to M3 and 

M4. Therefore, Part 1 and Part 3 set up the main data path. 

3.2 Design Implementation 

Essentially this design reduces the volume of 

necessary computational workload. Part 1 emphasizes this 

goal with the help of three memory blocks. The key block 

is employed to hold the reusable data, while the other two 

auxiliary blocks are used to store the insertion points of 

reusable data for the calculation of new AC results as well 

as to store a duplication of M1 for expediting the 

generation of reusable data. They constitute Memory M5. 

In the implementation of regular AC calculation 

according to Eq. (3), we found that the operation of 

division IP core takes a fixed amount of time for 

processing. Until the division operation is finished, the data 

entry on the critical data path will not move forward. A 

timer-like mechanism is implemented for parallel 

assistance. The length of the timer is set based on the time 

a division operation takes. Working as a clock signal that 

controls the critical data path, extra control logic is not 

needed. Hence, delay of the overall process is reduced.  

The design of the parameter generation block is 

straightforward, accomplished by implementing Eq. (14) 

and storing the results to M7 as indicated in Fig. 6(b). A 

key step is applying sine-cosine values for the production 

of MA and MB. With careful exploration of equation 

characteristics, a simplified design is achieved. With the 

replacement of twiddle factor 
k

NW2  by sinusoids through 

Euler’s formula, Eq. (14) can be rewritten as:  
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   (k = 0, 1, 2, … , N−1)   (18) 

Since hardware cannot directly support complex 

algorithms, it is helpful to express them separately as real 

and imaginary parts for implementation. 
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The range of k in the above equations with respect to 
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Figure 6. Refined architectures for PSD data conversion. 



N−1}.  This implies that only half number of sinusoid 

values are required, that is N out of 2N points. In addition, 

taking the advantage of triangular conversion formula,  
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the following equations are obtained: 
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Therefore, the required number of sinusoid values can 

be further cut by half. With only having the first quarter’s 

sinusoid values, i.e. for {k = 0, 1, 2, …, N/2-1}, two N-

point parameter vectors MA and MB are able to be 

calculated and stored in M7, respectively.  

Once one batch of data from the N-point FFT process 

is ready in M6, the 2N-point DFT results are rebuilt in 

conjunction with parameters stored in M7. This process 

fulfills the operation of Eq. (13) and Eq. (15). Similar to 

what was done above, Eq. (13) is separated into real and 

imaginary part for processing, as: 
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And, further extend Eq. (15) to: 
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With Eq. (22) and Eq. (23), 2N-point DFT values are 

calculated and finally stored in M3 and M4 as real and 

imaginary parts, respectively. It completes the function of 

Part 3 as depicted in Fig. 6(b). 

4. Experimental Evaluation 

4.1 Experimental Setup 

The implementation of this data converter targeted a 

Xilinx Virtex-2 Pro XC2VP50 FPGA, with Xilinx ISE 

Design Suite 10.1 on Redhat Enterprise Linux 5.8 OS as its 

development environment. As part of our auto-defensive 

infrastructure for network security [7], this data converter 

is designed to have the capability of processing data at 

Gigabit network rates. According to Sinha et al.’s study in 

[15], the size of internet packets varies from 40 to 1500 

Bytes and its distribution is strongly bimodal at both ends 

with 40% and 20%, respectively. Theoretically, the 

expected maximum throughput of Gigabit network is 2
17

 

byte/ms, which corresponds to 88 to 3277 packets/ms 

according to the packet sizes indicated above. The 16-bit 

input data bus is capable of accepting data at rates up to 

64k, which is enough to accommodate the number of 

incoming packets collected in a time interval of 20 ms. 

The network traffic embeded with Shrew DDoS 

attacks concentrates its energy on the low frequency area 

less than 50 Hz, while healthy traffic shows a much wider 

energy distribution [5, 6]. For a clear distinction of DDoS 

attacks in frequency domain, it is necessary to set the 

sampling rate of incoming network traffic great than 50 Hz. 

Setting it to 512 Hz extends the observable spectral range 9 

times wider than that of 50 Hz, which enables an accurate 

PSD analysis. Converting this frequency rate to the time 

domain yields 1.95 ms per sample. For a data sequence 

with L = 512, it takes one second to refresh all its data 

points, where each data point represents the number of 

incoming packets counted during a time interval of 1.95 

ms. 

4.2 Simulation Results 

Simulation provides an intuitive timing assessment of 

processing full length data sequences with L = 512. The 

replacement r was set to 100, roughly R = 0.2. With clock 

frequency at 5 MHz for simulation, our improved approach 

takes 102.4 us to store the initial 512-point’s data sequence 

to M1, according to Fig. 6(b). The AC process then takes 

26,679.0 us for operation until storing the intermediate data 

to M2. The 256-point FFT process takes 329.0 us from 

retrieving the data in M2 to storing the processed data to 

M6. The final 512-point DFT rebuild process takes 307.6 

us to complete the entire batch of data conversion and store 

the output to M3 and M4. The time it takes for the 

production and storage of Ma and Mb parameters according 

to Eq. (21) to M7 is 51.8 us. Since this step runs 

independently at the initial stage, it has no impact with the 

delay on the main data path. The overall processing delay 

for the initial sequence is 27,418.0 us. 

For a fair comparison, a hardware design of the 

conventional approach was also developed. As shown in 

Fig. 6, all necessary modules required by the conventional 

approach in Fig. 6(a) are all included in our improved 

approach in Fig. 6(b). The only difference is the length of 

operational sequences between 2N-point FFT and N-point 

FFT modules. This could be easily covered through 

parameter alteration without additional logic modification. 

Taking the advantage of modularized design, adapting our 

improved approach to the conventional approach is 

relatively straightforward. Meanwhile, the shared base of 



both designs makes the evaluation results more 

convincible. 

 

Figure 7. Timing analysis of simulation results between the 

improved approach and the conventional approach. 

The graphs in Fig. 7 illustrate the measured results 

from both our improved approach as well as the 

conventional approach depicted in Fig. 6(a) and Fig. 6(b), 

respectively. The left bar in each set represents the 

processing time under the conventional approach, while the 

remaining two bars represent that under our improved 

approach. The middle bar indicates the processing time for 

the initial data sequence, and the right bar represents the 

processing time for the following sequences. To be 

readable, the processing time is normalized, with the 

original measured values indicated on the top of each bar 

for reference.  

The first (leftmost) set depicts the processing time of 

memory access to M1 for writing the input data sequence. 

It takes 102.4 us and there is no difference between both 

approaches. The second set shows the delay for the AC 

process. Taking the conventional approach according to 

Eq. (3), the same amount time, 26679.0 us, always applies 

to the processing of each batch’s data sequence. With our 

component-reusable AC algorithm, this amount of time 

only applies to the processing of the initial batch’s data 

sequence. When reusable data is available for the 

processing of the following sequences, only 9,765.8 us is 

required to process. A significant delay reduction of 63.4% 

is achieved.  

The third set represents the delay for DFT processing. 

The processing time of direct 512-point DFT conversion 

according to Eq. (4) is 690.0 us, while our approach 

combining 256-point FFT plus 512-point DFT rebuild 

takes 636.6 us for completion. A saving of 7.7% is 

obtained. Since the DFT processing time is only equivalent 

to 2.6% or 6.5% of the AC processing time with respect to 

the conventional or our approach, respectively, this 

reduction has trivial contribution to the overall processing 

time which is concluded in the fourth histogram. Overall, a 

maximum reduction of 61.8% processing time from 

27471.4 us to 10504.8 us is achieved in this instance. 

According to the above timing analysis, it is the AC 

process that dominates the delay of data conversion. More 

than 97.3% of the overall processing time is taken for this 

purpose, in terms of our improved approach. On the other 

hand, the adapted 2N-point real-valued DFT conversion 

does not show much time saving on DFT process. 

However, the avoidance of another 256 points participating 

in direct FFT conversion does relieve the workload as 

analyzed in Fig. 5, which cannot be simply evaluated 

through timing analysis.  

4.3 Synthesis Analysis 

After simulation, the design for our improved 

approach was synthesized for the assessment of resource 

utilization as well as more accurate timing report. Table 1 

lists the summary of device utilization. Though the 

available resources that the Xilinx Virtex-2 Pro FPGA 

could provide is conservative in comparison with the latest 

Virtex family devices, it is still spacious enough to 

accommodate our design according to this summary. The 

timing report indicates that the maximum frequency of this 

board at Speed Grade: Virtex-7 is 91.893MHz. This means 

that all evaluation results from the above simulation with 5 

MHz clock frequency could be sped up roughly 17 times. 

Considering the clock frequency at 90 MHz, the overall 

processing delay for the initial sequence is 1.523 ms, and 

the delay from the subsequent sequences is 583.6 us. 

Therefore, all the conversion process can be done within 

the time interval of sampling one data point at 1.95 ms in 

this case. 

Table 1. Device Utilization Summary. 

Selected Device : 2vp50ff1148-7 

Number of Devices Used Total Utilization Rate 

Slices 2711 23616 11% 

Slice Flip Flops 2901 47232 6% 

4 

input 

LUTs 

Overall 4162 47232 8% 

used as logic 4081 out of  4162  (98%) 

used as Shift registers 81     out of 4162  (  2%) 

IOs 52   

bonded IOBs 52 812 6% 

BRAMs 14 232 6% 

MULT18X18s 13 232 5% 

GCLKs 1 16 6% 

5. Discussion  

Although this data converter is developed for our 

Shrew DDoS attack detection system, it could be applied to 

any application requiring real-time PSD data. Modularized 

design and IP core utilization enable easy adaptation. 

During development, it was noticed that even the definition 

of auto-correlation varies slightly depending on application 



background. Thus, supporting logic modification to one 

functional block without impacting other blocks is highly 

preferred. Segmenting individual modules is thus a good 

solution to both support design reuse and facilitate 

modification. The utilization of IP cores aids in managing 

data storage requirements as well as enabling FFT 

processing for new applications. With simple parameter 

adjustment, such as depth/length of B-RAM and FFT 

cores, a desired memory and FFT size can be achieved. In 

conjunction with a modularized interface, the 

customization of data converter can be completed 

efficiently.  

An important reason for our choosing the Xilinx 

Virtex-2 Pro FPGA as the target device is that it is also the 

device that NetFPGA-1G [11] is based on. With four 

Gigabit Ethernet Network Interface Controllers (NICs) and 

FPGA chips integrated together, the NetFPGA board 

seamlessly bridges the network traffic to digital signal 

processing. Meanwhile, many valuable open source 

solutions targeted to NetFPGA have been created for 

diverse applications. Configuring NetFPGA to be an open 

core gigabit router is one of the most popular applications. 

Implementing a data converter on top of this platform 

further expands its adaptability for network related 

applications. 

Since the implementation of the above referenced 

router to xc2vp50 consumes more than half of the available 

FPGA resources, the feasibility of implementing the data 

converter on the same chip remains an open question at 

this point. An alternative approach could be to implement 

the data converter in another xc2vp50, while pulling the 

sampled data from NetFPGA through the SATA interface 

for sharing. If successful, this approach will not only 

overcome the potential problem of resource shortages, but 

will actually lead to solving the issue of inter-board 

function extension. It is also a meaningful preparation for 

our planned detection system. 

6. Conclusions 

In this paper, a FPGA based real-time Power Spectral 

Density (PSD) converter for Shrew DDoS attack detection 

has been described. The innovative component-reusable 

AC algorithm and the adapted 2N-point real-valued DFT 

algorithm are the foundation of this work. With the 

inclusion of the component-reusable AC algorithm, the 

computing burden of AC processing on top of partially 

overlapped data sequences is significantly reduced. Both 

theoretical analysis and experimental study demonstrate 

the benefit of our approach in comparison with the 

conventional approach.  
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