
An Optimized Design of Reconfigurable PSD Accelerator for

Online Shrew DDoS Attacks Detection

†Hao Chen, †Yu Chen, †Douglas H. Summerville, ‡Zhou Su
†
Dept. of Electrical and Computer Engineering, SUNY - Binghamton, Binghamton, NY 13902, USA
‡
Dept. of Computer Science, Waseda University, Ohkubo 3-4-1, Shinjyuku, Tokyo 169-8555, Japan

Abstract

Shrew Distributed Denial-of-Service (DDoS) attacks are

stealthy, concealing their malicious activities in normal traffic.

Although it is difficult to detect shrew DDoS attacks in the time

domain, the existent energy exposes them in frequency domain.

For this purpose, online Power Spectral Density (PSD) analysis

necessitates real-time PSD data conversion. In this paper, an

optimized FPGA based accelerator for real-time PSD

conversion is proposed, which is based on our innovative

component-reusable Auto-Correlation (AC) algorithm and the

adapted 2N-point real-valued Discrete Fourier Transform

(DFT) algorithm. Further optimization is achieved through the

exploration of algorithm characteristics and hardware

parallelism for this case. Evaluation results from both

simulation and synthesis are provided. The overall design can

be easily placed in a Xilinx Virtex2 Pro FGPA.

Keywords

Power Spectral Density, FPGA Design, Shrew DDoS Attack

Detection, real time processing.

1. INTRODUCTION

The low-rate TCP-targeted Distributed Denial-of-

Service (DDoS) attack, also known as Shrew DDoS attack

[10] or pulsing attack [12], takes advantage of the time-out

mechanism of the TCP protocol to create illusory

congestions. By sending bursts at a high pulse data rate

while keeping a low average data rate, these attacks can

throttle the throughput of legitimate TCP flows to as low as

10% of normal bandwidth usage, and last indefinitely until

detected [5, 6].

Analyzing the power spectral density (PSD) of

monitored traffic can be an efficient way to detect DDoS

attacks. PSD describes the power distribution of a signal in

the frequency domain. By counting arriving network

packets during fixed intervals, a sequence of data points is

collected over a specific time interval. Treating the data

sequence as a random process, the PSD of traffic flow can

be obtained through the calculation and subsequent

conversion of its autocorrelation results to the frequency

domain. The PSD difference between real-time monitored

traffic flows and their normal statistical energy distribution

exposes concealed malicious activities without the need for

deep packet payload inspection [2].

Several research efforts have been reported that use

PSD analysis for the detection and containment of DDoS

attacks. Cheng et al [7] first reported the concept of

utilizing PSD of network flow to detect general TCP SYN

flood. Chen et al [4, 6] proposed using PSD of network

flow to detect shrew attacks. Hashim et al [8] further

extended PSD analysis based detection to the next

generation mobile network (NGMN). They claimed that

their proposed algorithm can accurately classify traffic as

normal, DoS and DDoS. He et al [9] proposed a method

for remote detection of bottleneck links, which is

applicable to the detection of any network congestion,

including DDoS attacks and Internet worms in theory.

However, a major challenge that hampers the real-time

application of these approaches is the lack of an

appropriate data converter to bear the intensive computing

requirements of producing real-time PSD data for analysis.

Software solutions are incapable of coping with the high

data rates, which naturally leads to pursuing hardware

solutions.

Having both the flexibility of software and high

parallelism of hardware, reconfigurable hardware devices,

such as Field Programmable Gate Arrays (FPGAs), have

been widely applied for many network security

applications including protocol wrapping, packet

classification, and intrusion detection [3]. The growing

number of FGPA Intellectual Property (IP) modules not

only makes it easy for the implementation of diverse DSP

functions to circuits, but provide excellent design balance

between high performance and lower power consumption.

Given these considerations, FPGA is the obvious choice

for implementation of this PSD converter.

In this paper, an optimized FPGA based real-time PSD

converter is proposed, which converts data of interest into

frequency domain for analysis. Our innovative embedded

converter is able to close the gap between supply and

demand of real-time PSD data. Taking advantage of

processing continuous data sequences with partial overlap,

the component-reusable Auto-Correlation (AC) algorithm

is capable of significantly reducing computing workload in

comparison with that of the conventional AC algorithm. In

conjunction with the employment of an FFT IP core, the

adapted 2N-point real-valued Discrete Fourier Transform

(DFT) algorithm not only reduces the length of the

operational data sequence to half, but fully utilizes the dual

input channels of the FFT core to achieve an optimized

design. For performance comparison, a design based on the

conventional approach was also implemented.

The remainder of this paper is structured as follows. In

section 2, the overall system architecture and algorithms

are described. Section 3 depicts further implementation

details. Evaluation results are then explained in Section 4.

After discussing some development issues in Section 5,

Section 6 summarizes this paper.

2. System Architecture and Algorithms

2.1 System Architecture

Figure 1 shows the overall architecture of the

embedded data conversion accelerator, as outlined by the

dashed box. It consists of two major modules: AC and

DFT. The AC module takes a batch of sampled data and

calculates its auto-correlation, i.e.: the similarity to its

previous batch. The DFT module converts this AC result

from the time domain to the frequency domain for PSD

analysis. One can treat the number of arriving packets

within a fixed time slot as a random process:

{x(t)| t = n·, nN} (1)

where Δ is a constant time interval, N is the set of natural

numbers and n is a set of positive integers. x(t) is a random

variable that refers to the number of packets sampled

within a unit time interval at time t, i.e. (t-Δ, t]. If we

consider Δ is a unit time slot, Eq. (1) could be reduced to:

{x(t)| t = n, nN} (2)

Also, x(n) represents the total number of packets

sampled at the n-th sampling period. The sampling process

is assumed as a Wide-Sense Stationary (WSS) random

process. The AC function is defined as:










1

0

)]()([
1

)(
mL

n

mnxnx
mL

mA (3)

where m=0, 1, 2, …, L-1.

L refers to the length of the data sequence, i.e. the total

number of sample points participating in a batch of the AC

process. A(m) is the AC with a shift of m points from the n-

th sampling point, where {0 ≤ m < L}. After AC

processing, the DFT is applied to convert the intermediate

data to the frequency domain for PSD analysis by:







1

0

)()(
L

m

km

LWmAkY (k=0, 1, 2,…, L−1) (4)

where L

kmj

km

L eW

2

 .

Eq. (4) gives a standard DFT formula and more detail

can be found in [14]. As shown by Eq. (3) and Eq. (4), the

data conversion process is computationally intensive. To

reduce the delay, a hardware-based approach is introduced,

which is based our innovative component-reusable AC

algorithm and the Adapted 2N-point Real-valued DFT

algorithm.

2.2 Component-Reusable AC algorithm

According to Eq. (3), the essential part of the AC

process is the convolution between x(n) and x(n+m). With

a specified m, it takes L - m multiplications per round to

calculate the corresponding A(m), as shown in Fig. 2. To

achieve a full batch of A(m) with {0 ≤ m < L}, a fixed

number of multiplications are required, as:

2

)1(
]12...)1([




LL
LL (5)

For instance, in Fig. 2, it is assumed that the length of

the operational data sequence (L) is 10 and the current shift

(m) is 2. The convolution result of the i
th

 batch is:

)9()7(...)3()1()2()0()()(xxxxxxC mnxnx 
 (6)

which includes 8 multiplications per round as represented

by the area combining C_1 and C_2 in the figure.

In practice, the workload of AC process on a

continuous data series can be reduced if convolution results

are reusable. As long as not all the data points are replaced

for the following batch’s AC process, existing partial

convolution results can be reused, so as to reduce the

overall computational complexity. To describe the

replacement of data points for the continuous AC process,

a new parameter r is introduced.

As illustrated in Fig. 2, the replacement (r) is 3 for the

(i+1)
th

 batch’s convolution. The three oldest data points are

removed and the same number of new data points is

appended to keep the same data length (L) for operation.

Moving from the i
th

 batch, the operational data points are

now from 3 to 12. The current convolution result is

represented by the combined area of C_2 and C_3. C_1 is

excluded, since the corresponding old points have been

removed. Obviously, C_2, which was generated in the i
th

batch, can be reused as partial current result to avoid

Figure 1. Data Conversion Steps.

Figure 2. Convolution with reusable parts.

http://en.wikipedia.org/wiki/Cross-correlation

recalculation. Only C_3 requires calculation, which is 3

multiplications in this case.

A further study reveals that, when L – m ≥ r, results of

(L – m – r) rounds of multiplication can be reused for the

calculation of the next batch’s A(m). In terms of the

number of multiplications, that is:









rL

m

reusable

rLrL
mrLP

0 2

)1()(
)((7)

Only r new multiplications need to be calculated, as

illustrated in Fig. 2. However, when L – m < r, (L – m)

multiplication per need to be calculated. Therefore, the

total number of multiplications required for the calculation

of a full batch AC process is:

2
)

2

1
(

2

)1(
)1(

)(

2

1

10

r
rL

rr
rLr

mLrP
L

rLm

rL

m

total






 






 (8)

When r ≥ L, since all the old data points are replaced, Ptotal

reaches its maximum, as:

2

)1(

2
)

2

1
(

2

max_




LLL
LLptotal

 (9)

This equation also applies to the initial batch’s data

sequence for AC processing, since all the data points are

new. In fact, Preusable is the difference between Ptotal_max and

Ptotal given 0 ≤ r ≤ L.

According to Eq. (8) and Eq. (9), Ptotal calculated on

top of a continuous data series is determined by L and r;

and its upper bound is only determined by L. Figure 3

gives an intuitive demonstration of their relationship. The

replacement rate R (R= r/L) is introduced for the evaluation

of the impact of this component-reusable AC algorithm on

the overall computational complexity. In Fig. 3, the X axis

represents the length of data sequence (L), and Y axis

represents the number of required multiplication operations

(N). Ten curves are presented that illustrate the relationship

between L and Ptotal under different R values, bottom up

from 10% to 100%, respectively. For L ranging from 10 to

150, the impact of different Rs to the number of required

multiplications N is presented. Without any reusable part,

i.e.: R ≥ 100%, multiplication is applied to all the available

data points, which is given by the upper curve. This curve

overlaps the results of Ptotal_max from Eq. (9), which also

validates our algorithm.

With reusable part, N, depends on the percentage of

reuse. The smaller R is, the less the N, since more elements

are reusable for AC computation. Consider a series of N

values when L = 120, for example. As labeled on the plot,

N is 1374 when R = 10%, and it goes to 3690 when R =

30%. In comparison with N = 7260 when R = 100%,

approximately 81% and 50% multiplications are saved,

respectively, when R is within 10-30%. However, N grows

much faster with the increase of R. It rises to 5430 when R

goes to 50%, and becomes much closer to the maximum N

when R crosses 70%. Considering the corresponding

overhead, it is more inappropriate to adopt this algorithm

with high R for AC processing.

Figure 4 further evaluates our component-reusable AC

algorithm in terms of the increment rate (I) of N with

respect to L. The X axis represents the length of data

sequence (L), with a scale from 0 to 1500. The Y axis

represents the increment rate (I) which is defined as:

)0(
)(

)()1(

)(
)1(





 l

lN

lNlN

lN

N
lI (10)

where l and l + 1 refer to L on two adjacent stages,

respectively. ∆N = N(l + 1) - N(l), which refers to the

increment of N between two adjacent stages.

Corresponding to different R values, ten curves are

plotted illustrating the trends of I with the increase of L.

Starting from L = 10, all curves achieve their peaks at L =

11 with I at approximately 20. The maximum vertex is

22.222 for R = 30%. In fact, I(11) is the first available I

according to Eq. (10). Then, the curves decrease quickly

Figure 3. The impact of sequence length L replacement rate to

the computational complexity of multiplication.

Figure 4. The trend of increment rate for multiplication.

and finally trend to 0.1 based on the evaluation of L up to

1500 points. Despite wide variation of N, curves under

different R values show high consistency in I as illustrated

in Fig. 3.

From the above analysis, although our component-

reusable AC algorithm does not optimize I in terms of R, it

decreases the value of N significantly with the increase of

L. For L = 1000, a saving of 81% N could be achieved in

comparison with different R values, at R = 10% versus R =

100%. However, determining the right R for a perfect fit is

application dependent. On the other hand, it affects the

efficiency of using this algorithm.

2.3 Adapted 2N-point Real-valued DFT algorithm

After AC processing, the operational data sequence

{A(m)| 0 ≤ m ≤ L-1} from Eq. (3) needs to be converted

from the time to the frequency domain. The DFT is

employed for this conversion. However, the

implementation of DFT conversion in hardware is

complicated and time-consuming. Employing existing

Intelligent Property (IP) cores for this purpose is more

practical than developing custom modules in FPGA design,

not only facilitating prototyping, but achieving optimized

performance and resource utilization on the targeted

platform.

Applying a Fast Fourier Transform (FFT) IP core is a

common approach for implementing the DFT in and

FPGA. Since the processing of the general purpose DFT is

based on complex-valued data, the Xilinx FFT IP core

features dual-channel input for taking both parts of a

complex number simultaneously, i.e. one channel

dedicating for real part, and the other for imaginary part.

However, the data sequence output from A(m) is real-

valued only. Fetching them directly to the FFT IP core for

processing leaves the input channel for imaginary-valued

data unused. By fetching the real-valued data sequence into

both input channels, not only could the throughput of DFT

processing be doubled but the operation timing of the FFT

IP core can be cut due to the length reduction of the

operational sequence. Based on this idea and inspired from

[1, 13, 14], an adapted 2N-point Real-valued DFT

algorithm is proposed.

This algorithm only applies to the data sequence with

even length, i.e. L = 2N. The basic idea is to split the 2N-

point real data sequence to form an N-point complex data

sequence for regular FFT processing. Then, the results of

the other half are reconstructed by application of the

symmetry conjugate property of complex numbers, rather

than calculation. The following description outlines this

procedure.

(1) Decimate the real data sequence {A(m) | 0 ≤ m ≤ 2N-

1} into two parts to form a complex data sequence

with length N.

x(n) = A(2n) + jA(2n+1), (n = 0, 1, 2, … , N−1) (11)

(2) Perform an FFT operation on the N-point sequence.

Since the FPGA IP core is employed, this step is

considered as a black-box process.

X(k) = FFT{x(n)}, (k,n = 0, 1, 2, … , N−1) (12)

(3) Calculate the first N-point results of Y(k) by:

Y(k) =MA∙X(k)+MB∙X*(N-k), (k = 0, 1, 2, …, N−1) (13)

where M1 and M2 are pre-calculated values for lookup.














)1(
2

1
)(

)1(
2

1
)(

2

2

k

NB

k

NA

jWkM

jWkM
, (k = 0, 1, 2, …, N−1) (14)

(4) Obtain the remaining N-point result of Y(k) by using

symmetry conjugate property of complex numbers:

Y(2N−k) = Y*(k), (k = 1, 2, … , N−1); and









0)(

)0()0()(

kY

XXkY

i

irr , (k = N) (15)

(5) Complete a batch of DFT conversion for A(m) with L

= 2N. The results should be the same as that obtained

through direct processing via 2N-point DFT:

Y(k) = DFT{A(m)}, (k, m = 0, 1, 2, …, 2N-1) (16)

The benefit of this approach is two-fold. Not only is

the dual-channel input of the IP core fully utilized, but the

workload of essential FFT processing is cut by at least half.

Considering the complexity of the FFT operation for a

length L data sequence is O(L*log(L)), a sequence with

length N = L/2 is O((L/2)*log(L/2)). The reduction rate (R)

is:

%100)log1(
2

1
%100

log

2
log

21
2






 L
LL

LL

R (17)

which represents how much the original work load is

reduced.

Figure 5. The reduction trend of FFT workload.

Figure 5 gives an intuitive demonstration. The X axis

shows the length (L) of data sequence for FFT operation

ranging from 10 to 1500, and the Y axis the reduction rate

(R). For a sequence with L=1024, a reduction of 55% the

original FFT workload can be achieved. The reduction

approaches nearly half as L increases further.

3. Implementation

3.1 Design Overview

The block diagrams in Fig. 6 further refine the data

conversion process presented in Fig. 1. Figure 6(a)

illustrates a conventional architecture. Besides the AC and

FFT processing blocks, memory blocks are introduced for

data storage so as to achieve parallel execution. Memory

M1 holds the input data sequence, memory M2 the

intermediate results from the AC process, and memory M3

and M4 the real and imaginary parts of processed DFT

data, respectively. The depth of these memories is set to

2N, the length of the operational data sequence.

Figure 6(b) illustrates our innovative data conversion

architecture. In comparison with the previous architecture,

both the AC and DFT blocks are modified substantially. In

the AC part, the reuse logic and its corresponding M5 for

holding reusable data are added. In the DFT part, the direct

2N-point FFT is replaced by the process of the N-point

FFT plus the 2N-point rebuild. The intermediate data from

the FFT are stored in M6, while the static parameters are

stored in M7. The process of 2N-point rebuilding starts

when both data sets are available.

Based on the data traveling through the conversion

process, the overall design is organized into three parts, as

outlined in Fig. 6(b). The first part includes the AC process

and the following N-point FFT process. It starts with

reading the data from M1 and ends with writing the data to

M6. The second part is the parameter generating process,

which consists of the parameter generator and M7. The

generator only runs during initialization: after all the

necessary parameters are produced and stored in M7 for

subsequent access, it sleeps until reset. The third part

consists of the remaining components that take data from

both M6 and M7 for 2N-point rebuild and write to M3 and

M4. Therefore, Part 1 and Part 3 set up the main data path.

3.2 Design Implementation

Essentially this design reduces the volume of

necessary computational workload. Part 1 emphasizes this

goal with the help of three memory blocks. The key block

is employed to hold the reusable data, while the other two

auxiliary blocks are used to store the insertion points of

reusable data for the calculation of new AC results as well

as to store a duplication of M1 for expediting the

generation of reusable data. They constitute Memory M5.

In the implementation of regular AC calculation

according to Eq. (3), we found that the operation of

division IP core takes a fixed amount of time for

processing. Until the division operation is finished, the data

entry on the critical data path will not move forward. A

timer-like mechanism is implemented for parallel

assistance. The length of the timer is set based on the time

a division operation takes. Working as a clock signal that

controls the critical data path, extra control logic is not

needed. Hence, delay of the overall process is reduced.

The design of the parameter generation block is

straightforward, accomplished by implementing Eq. (14)

and storing the results to M7 as indicated in Fig. 6(b). A

key step is applying sine-cosine values for the production

of MA and MB. With careful exploration of equation

characteristics, a simplified design is achieved. With the

replacement of twiddle factor
k

NW2 by sinusoids through

Euler’s formula, Eq. (14) can be rewritten as:













)cos())sin(1(
2

1
))]sin()(cos(1[

2

1
)(

)cos())sin(1(
2

1
))]sin()(cos(1[

2

1
)(

k
N

jk
N

k
N

jk
N

jkM

k
N

jk
N

k
N

jk
N

jkM

B

A





 (k = 0, 1, 2, … , N−1) (18)

Since hardware cannot directly support complex

algorithms, it is helpful to express them separately as real

and imaginary parts for implementation.














)cos(
2

1
)(

))sin(1(
2

1
)(

_

_

k
N

kM

k
N

kM

iA

rA


















)cos(
2

1
)(

))sin(1(
2

1
)(

_

_

k
N

kM

k
N

kM

iB

rB




 (k = 0, 1, 2, … , N−1) (19)

The range of k in the above equations with respect to

)sin(k
N

 , which is actually)
2

2
sin(k

N


, is {k = 0, 1, 2, …,

Figure 6. Refined architectures for PSD data conversion.

N−1}. This implies that only half number of sinusoid

values are required, that is N out of 2N points. In addition,

taking the advantage of triangular conversion formula,














xx

xx

sin)
2

cos(

cos)
2

sin(




, when

2
0


 x , (20)

the following equations are obtained:














)sin(
2

1
)

2
(

))cos(1(
2

1
)

2
(

_

_

k
N

kM

k
N

kM

iA

rA


















)sin(
2

1
)

2
(

))cos(1(
2

1
)

2
(

_

_

k
N

kM

k
N

kM

iB

rB




, (k = 0, 1, 2, …, N/2−1) (21)

Therefore, the required number of sinusoid values can

be further cut by half. With only having the first quarter’s

sinusoid values, i.e. for {k = 0, 1, 2, …, N/2-1}, two N-

point parameter vectors MA and MB are able to be

calculated and stored in M7, respectively.

Once one batch of data from the N-point FFT process

is ready in M6, the 2N-point DFT results are rebuilt in

conjunction with parameters stored in M7. This process

fulfills the operation of Eq. (13) and Eq. (15). Similar to

what was done above, Eq. (13) is separated into real and

imaginary part for processing, as:

)()()()(

)()()()()(

__

__

kMkNXkMkNX

kMkXkMkXkY

iBirBr

iAirArr





)()()()(

)()()()()(

__

__

kMkNXkMkNX

kMkXkMkXkY

rBiiBr

iArrAii





 (k = 0, 1, 2, … , N−1) (22)

And, further extend Eq. (15) to:









)()2(

)()2(

kYkNY

kYkNY

ii

rr (k = 1, 2, … , N−1) (23)









0)(

)0()0()(

kY

XXkY

i

irr (k = N)

With Eq. (22) and Eq. (23), 2N-point DFT values are

calculated and finally stored in M3 and M4 as real and

imaginary parts, respectively. It completes the function of

Part 3 as depicted in Fig. 6(b).

4. Experimental Evaluation

4.1 Experimental Setup

The implementation of this data converter targeted a

Xilinx Virtex-2 Pro XC2VP50 FPGA, with Xilinx ISE

Design Suite 10.1 on Redhat Enterprise Linux 5.8 OS as its

development environment. As part of our auto-defensive

infrastructure for network security [7], this data converter

is designed to have the capability of processing data at

Gigabit network rates. According to Sinha et al.’s study in

[15], the size of internet packets varies from 40 to 1500

Bytes and its distribution is strongly bimodal at both ends

with 40% and 20%, respectively. Theoretically, the

expected maximum throughput of Gigabit network is 2
17

byte/ms, which corresponds to 88 to 3277 packets/ms

according to the packet sizes indicated above. The 16-bit

input data bus is capable of accepting data at rates up to

64k, which is enough to accommodate the number of

incoming packets collected in a time interval of 20 ms.

The network traffic embeded with Shrew DDoS

attacks concentrates its energy on the low frequency area

less than 50 Hz, while healthy traffic shows a much wider

energy distribution [5, 6]. For a clear distinction of DDoS

attacks in frequency domain, it is necessary to set the

sampling rate of incoming network traffic great than 50 Hz.

Setting it to 512 Hz extends the observable spectral range 9

times wider than that of 50 Hz, which enables an accurate

PSD analysis. Converting this frequency rate to the time

domain yields 1.95 ms per sample. For a data sequence

with L = 512, it takes one second to refresh all its data

points, where each data point represents the number of

incoming packets counted during a time interval of 1.95

ms.

4.2 Simulation Results

Simulation provides an intuitive timing assessment of

processing full length data sequences with L = 512. The

replacement r was set to 100, roughly R = 0.2. With clock

frequency at 5 MHz for simulation, our improved approach

takes 102.4 us to store the initial 512-point’s data sequence

to M1, according to Fig. 6(b). The AC process then takes

26,679.0 us for operation until storing the intermediate data

to M2. The 256-point FFT process takes 329.0 us from

retrieving the data in M2 to storing the processed data to

M6. The final 512-point DFT rebuild process takes 307.6

us to complete the entire batch of data conversion and store

the output to M3 and M4. The time it takes for the

production and storage of Ma and Mb parameters according

to Eq. (21) to M7 is 51.8 us. Since this step runs

independently at the initial stage, it has no impact with the

delay on the main data path. The overall processing delay

for the initial sequence is 27,418.0 us.

For a fair comparison, a hardware design of the

conventional approach was also developed. As shown in

Fig. 6, all necessary modules required by the conventional

approach in Fig. 6(a) are all included in our improved

approach in Fig. 6(b). The only difference is the length of

operational sequences between 2N-point FFT and N-point

FFT modules. This could be easily covered through

parameter alteration without additional logic modification.

Taking the advantage of modularized design, adapting our

improved approach to the conventional approach is

relatively straightforward. Meanwhile, the shared base of

both designs makes the evaluation results more

convincible.

Figure 7. Timing analysis of simulation results between the

improved approach and the conventional approach.

The graphs in Fig. 7 illustrate the measured results

from both our improved approach as well as the

conventional approach depicted in Fig. 6(a) and Fig. 6(b),

respectively. The left bar in each set represents the

processing time under the conventional approach, while the

remaining two bars represent that under our improved

approach. The middle bar indicates the processing time for

the initial data sequence, and the right bar represents the

processing time for the following sequences. To be

readable, the processing time is normalized, with the

original measured values indicated on the top of each bar

for reference.

The first (leftmost) set depicts the processing time of

memory access to M1 for writing the input data sequence.

It takes 102.4 us and there is no difference between both

approaches. The second set shows the delay for the AC

process. Taking the conventional approach according to

Eq. (3), the same amount time, 26679.0 us, always applies

to the processing of each batch’s data sequence. With our

component-reusable AC algorithm, this amount of time

only applies to the processing of the initial batch’s data

sequence. When reusable data is available for the

processing of the following sequences, only 9,765.8 us is

required to process. A significant delay reduction of 63.4%

is achieved.

The third set represents the delay for DFT processing.

The processing time of direct 512-point DFT conversion

according to Eq. (4) is 690.0 us, while our approach

combining 256-point FFT plus 512-point DFT rebuild

takes 636.6 us for completion. A saving of 7.7% is

obtained. Since the DFT processing time is only equivalent

to 2.6% or 6.5% of the AC processing time with respect to

the conventional or our approach, respectively, this

reduction has trivial contribution to the overall processing

time which is concluded in the fourth histogram. Overall, a

maximum reduction of 61.8% processing time from

27471.4 us to 10504.8 us is achieved in this instance.

According to the above timing analysis, it is the AC

process that dominates the delay of data conversion. More

than 97.3% of the overall processing time is taken for this

purpose, in terms of our improved approach. On the other

hand, the adapted 2N-point real-valued DFT conversion

does not show much time saving on DFT process.

However, the avoidance of another 256 points participating

in direct FFT conversion does relieve the workload as

analyzed in Fig. 5, which cannot be simply evaluated

through timing analysis.

4.3 Synthesis Analysis

After simulation, the design for our improved

approach was synthesized for the assessment of resource

utilization as well as more accurate timing report. Table 1

lists the summary of device utilization. Though the

available resources that the Xilinx Virtex-2 Pro FPGA

could provide is conservative in comparison with the latest

Virtex family devices, it is still spacious enough to

accommodate our design according to this summary. The

timing report indicates that the maximum frequency of this

board at Speed Grade: Virtex-7 is 91.893MHz. This means

that all evaluation results from the above simulation with 5

MHz clock frequency could be sped up roughly 17 times.

Considering the clock frequency at 90 MHz, the overall

processing delay for the initial sequence is 1.523 ms, and

the delay from the subsequent sequences is 583.6 us.

Therefore, all the conversion process can be done within

the time interval of sampling one data point at 1.95 ms in

this case.

Table 1. Device Utilization Summary.

Selected Device : 2vp50ff1148-7

Number of Devices Used Total Utilization Rate

Slices 2711 23616 11%

Slice Flip Flops 2901 47232 6%

4

input

LUTs

Overall 4162 47232 8%

used as logic 4081 out of 4162 (98%)

used as Shift registers 81 out of 4162 (2%)

IOs 52

bonded IOBs 52 812 6%

BRAMs 14 232 6%

MULT18X18s 13 232 5%

GCLKs 1 16 6%

5. Discussion

Although this data converter is developed for our

Shrew DDoS attack detection system, it could be applied to

any application requiring real-time PSD data. Modularized

design and IP core utilization enable easy adaptation.

During development, it was noticed that even the definition

of auto-correlation varies slightly depending on application

background. Thus, supporting logic modification to one

functional block without impacting other blocks is highly

preferred. Segmenting individual modules is thus a good

solution to both support design reuse and facilitate

modification. The utilization of IP cores aids in managing

data storage requirements as well as enabling FFT

processing for new applications. With simple parameter

adjustment, such as depth/length of B-RAM and FFT

cores, a desired memory and FFT size can be achieved. In

conjunction with a modularized interface, the

customization of data converter can be completed

efficiently.

An important reason for our choosing the Xilinx

Virtex-2 Pro FPGA as the target device is that it is also the

device that NetFPGA-1G [11] is based on. With four

Gigabit Ethernet Network Interface Controllers (NICs) and

FPGA chips integrated together, the NetFPGA board

seamlessly bridges the network traffic to digital signal

processing. Meanwhile, many valuable open source

solutions targeted to NetFPGA have been created for

diverse applications. Configuring NetFPGA to be an open

core gigabit router is one of the most popular applications.

Implementing a data converter on top of this platform

further expands its adaptability for network related

applications.

Since the implementation of the above referenced

router to xc2vp50 consumes more than half of the available

FPGA resources, the feasibility of implementing the data

converter on the same chip remains an open question at

this point. An alternative approach could be to implement

the data converter in another xc2vp50, while pulling the

sampled data from NetFPGA through the SATA interface

for sharing. If successful, this approach will not only

overcome the potential problem of resource shortages, but

will actually lead to solving the issue of inter-board

function extension. It is also a meaningful preparation for

our planned detection system.

6. Conclusions

In this paper, a FPGA based real-time Power Spectral

Density (PSD) converter for Shrew DDoS attack detection

has been described. The innovative component-reusable

AC algorithm and the adapted 2N-point real-valued DFT

algorithm are the foundation of this work. With the

inclusion of the component-reusable AC algorithm, the

computing burden of AC processing on top of partially

overlapped data sequences is significantly reduced. Both

theoretical analysis and experimental study demonstrate

the benefit of our approach in comparison with the

conventional approach.

REFERENCES

[1] C. S. S. Burrus and T. W. Parks, DFT/FFT and Convolution

Algorithms: Theory and Implementation: John Wiley &

Sons, Inc., 1991.

[2] H. Chen and Y. Chen, "A Novel Embedded Accelerator for

Online Detection of Shrew DDoS Attacks," in Proceedings

of the 2008 International Conference on Networking,

Architecture, and Storage, 2008, pp. 365-372.

[3] H. Chen, Y. Chen, and D. H. Summerville, "A Survey on the

Application of FPGAs for Network Infrastructure Security,"

Communications Surveys & Tutorials, IEEE, vol. 13, pp.

541-561, 2011.

[4] Y. Chen and H. Chen, "NeuroNet: An Adaptive

Infrastructure for Network Security," Journal of

Information, Intelligence and Knowledge, vol. 1, pp. 143-

168, 2009.

[5] Y. Chen and K. Hwang, "Collaborative Change Detection of

DDoS Attacks on Community and ISP Networks," in the

IEEE International Symposium on Collaborative

Technologies and Systems (CTS'06), Las Vegas, NV., USA,

2006, pp. 401-410.

[6] Y. Chen and K. Hwang, "Spectral Analysis of TCP Flows

for Defense against Reduction-of-Quality Attacks," in the

2007 IEEE International Conference on Communications

(ICC'07), lasgow, Scotland, 2007, pp. 24-28.

[7] C.-M. Cheng, H. T. Kung, and K.-S. Tan, "Use of spectral

analysis in defense against DoS attacks," in Global

Telecommunications Conference, 2002. GLOBECOM '02.

IEEE, 2002, pp. 2143-2148.

[8] F. Hashim, M. R. Kibria, and A. Jamalipour, "Detection of

DoS and DDoS attacks in NGMN using frequency domain

analysis," in Communications, 2008. APCC 2008. 14th Asia-

Pacific Conference on, 2008, pp. 1-5.

[9] X. He, C. Papadopoulos, J. Heidemann, r. Mitra, and U.

Riaz, "Remote detection of bottleneck links using spectral

and statistical methods," Comput. Netw., vol. 53, pp. 279--

298, 2009.

[10] A. Kuzmanovic and E. W. Knightly, "Low-rate TCP-

targeted denial of service attacks: the shrew vs. the mice and

elephants," in Proceedings of the 2003 conference on

Applications, technologies, architectures, and protocols for

computer communications, Karlsruhe, Germany, 2003, pp.

75-86.

[11] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P.

Hartke, J. Naous, R. Raghuraman, and L. Jianying,

"NetFPGA--An Open Platform for Gigabit-Rate Network

Switching and Routing," in Microelectronic Systems

Education, 2007. MSE '07. IEEE International Conference

on, 2007, pp. 160-161.

[12] X. Luo and R. K. C. Chang, "On a New Class of Pulsing

Denial-of-Service Attacks and the Defense," in Network and

Distributed System Security Symp. (NDSS), 2005, pp. 61-79.

[13] R. Matusiak, "Implementing fast Fourier transform

algorithms of real-valued sequences with the TMS320 DSP

family," in Application Report, SPRA291 - August 2001

texas instruments, 2001.

[14] J. G. Proakis and D. K. Manolakis, Digital Signal

Processing: Principles, Algorithms and Applications (4th

Edition): Prentice Hall, 2006.

[15] R. Sinha, C. Papadopoulos, and J. Heidemann, "Internet

Packet Size Distributions: Some Observations," in Technical

Report ISI-TR-2007-643, ed. Los Angeles: USC/Information

Sciences Institute, 2007.

